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Abstract 

According to statistics, accidents involving heavy vehicles are generally more serious than 

those of light vehicles. For the proper functioning of vehicle stability control under dynamic 

road conditions and driver’s inputs, precise estimations of vehicle states are necessarily 

required. In particular, information on the roll angle is critical to vehicle handling and safety 

control. Commercially available sensors which measure the roll angle are not cost effective 

that is the reason estimation methods that use available sensor measurements and vehicle 

dynamics models are necessarily required. This paper proposes a novel methodology to 

estimate the roll angle of vehicle. A roll angle observer is designed using the bicycle model 

and the kinematic model. In the first step of research we used Kalman filter to extract roll 

angle and gravity compensated lateral acceleration from kinematic model. After which, we 

used these estimations as input for our dynamic model to estimate roll dynamics. Kalman 

filter and Sliding mode observer is implemented using simplest roll dynamics model to 

measure the roll angle of a vehicle and the validation of results is carried using commercial 

software, CarSim®.(CarSim, Michigan US) under variety of maneuvers. 
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1. Introduction 

In current era, the primary objective of road transport systems is to reduce the number 

of accidents and for the same reason, vehicles in the market are equipped with sophisticated 

control systems, such as ESC (Electronic Stability Control) and RSC (Roll Stability Control) 

[1,2] for the improvement of vehicle safety standards. The discussed systems rely on 

complete knowledge of vehicle behavior in advance during different conditions and 

maneuvers for the proper actuation of the control system [3–5]. In particular the knowledge 

about the roll angle of the vehicle is of significant importance in RSC systems. Rollover 

accidents are responsible for nearly 33% of all deaths from passenger vehicle crashes [6]. 

The success of RSC system depends on the vehicle roll angle information. Dual-

antenna GPS can be used to directly measure vehicle roll angle but the equipment cost of 

such system is high [7]. For this reason, roll angle of a vehicle needs to be estimated using 

available measurements and a cost-effective system [8,9]. There are three approaches 

found in literature currently [6,10] which can be used to estimate attitude of a vehicle: (1) 

indirect approach; (2) vehicle dynamics model approach; (3) additional sensor aided 

approach. The indirect approach uses vehicle sensors such as wheel speed sensors and 

inertial measurement unit (IMU) [9]. The in-vehicle sensor approach is currently the cheapest 

solution for vehicle attitude estimation problem but it suffers from cumulative integration 

errors due to accelerometer bias and gyro drift. The vehicle modeling approach [11] requires 

the accurate vehicle dynamics model as well as vehicle parameters in addition to bias 

compensation for precise estimation. The additional sensor-aided approach [12] such as 
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using a vision sensor can provide the accurate heading angle of the vehicle. However, the 

update rate of the vision sensor is too slow, and the failure of camera can frequently occur 

due to the influence of road conditions and extreme weather changes. 

In [13], an algorithm vehicle roll angle estimation algorithm is proposed which utilizes the 

measurements obtained from suspension deflection sensors and accelerometers. However, 

the estimation method lacks precision. Furthermore, suspension deflection sensors in 

market are often quite expensive and are typically not designed for majority of standard 

vehicles. In [10], a dynamic observer is proposed which used the information obtained from 

a lateral accelerometer and a gyroscope. However, the error produced in the transient 

response of estimated vehicle roll angle is high, neither model nor measurement noise is 

taken into account in the mentioned algorithm. An online accelerometer bias estimation 

algorithm is proposed in [14]. An estimation method based on lateral velocity and attitude 

has been proposed for automated driving vehicle in [15]. The stated method fused the 

information obtained from six DOF IMU and vehicle dynamics, and it can run autonomously 

without aid from extra information. The root mean square error (RMSE) for roll angle 

obtained through this technique remained at 0.6 degree. There are many non-linear attitude 

estimation techniques discussed by [16] such as QUEST, recursive QUEST, Extended 

Kalman Filter, multiplicative Kalman Filter, backward smoothing extended Kalman filter. 

Discrepancies of each individual algorithm were discussed based on computational burden, 

convergence time and noise response. Filters such as extended Kalman rely on priori 

estimate and may not produce accurate results if priori estimate is not accurate or strongly 

nonlinear dynamics intervene. Similarly, unscented filters might be attractive for systems 

with nonlinear dynamics but lag in terms of computational burden. Dimensionality constraint 

is common among particle filters if more than few parameters need to be estimated. The 

discussed systems show promising results in complex systems when higher computational 

power and accurate priori estimates are available Therefore, simple model based observers 

along with attitude estimation algorithms are proposed in this research to reduce 

computational power and convergence time.  

Global Positioning System (GPS) is not feasible due to signal outage in urban regions, 

tunnels and Parking lots etc. [17, 18]. Two primary requirements need to be met for the 

sensor design for driving applications. First, the sensor should be capable enough to provide 

continuous measurement under all circumstances. Secondly, sensors must show robust 

performance under all vehicle maneuvers regardless of severity and duration of maneuver. 

Low cost inertial navigation systems (INS) tend to produce large estimation errors and signal 

severity and time increases [19]. Automotive Gyroscopes are the simplest and most precise 

solution for vehicle attitude estimation. Attitude angle can be obtained by integrating angular 

velocities using tri-axial gyroscope. Integration process itself is used to accumulate any 

noise or bias in sensor measurements that can drift with time. Fiber-optic and ring laser 

technology is used in automotive gyroscopes to deliver the accuracy necessary for driving 

applications. However, they are quiet expensive and sometimes their cost is comparable to 

that of the vehicle itself. 

In this paper, we addressed the main issues related to state estimation of vehicle roll 

angle. Attitude estimation in case of ground vehicles is challenging due to terrain roughness, 

road disturbances and noise. Model based observers are often too complex to implement 

and require powerful onboard processor to deal with computation cost.  Vehicle dynamics 

simulation is narrowed down using simple models which are computationally less intensive 

as compared to complex models. 
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The proposed methods are easy to implement and fast since they are free from 

iteration. In order to eliminate the significant effects of gyro bias, we have suggested a bias 

compensation which is merged with filtering architecture. Experimental validation is carried 

out on hardware in real time environment to show the performance comparison Accuracy of 

results show that the proposed filters are competitive in performance to Kalman filter and 

higher order observers. Suggested algorithms promise high accuracy and low computational 

cost in less convergence time.   

Size and cost of inertial sensors shrunk since the introduction of MEMS [20]. Miniature 

gyroscopes and accelerometers are available at a very low cost these days but their 

performance is too much degraded when used in automotive applications. Automotive grade 

gyroscope typically produces 1°/h drift whereas; a MEMS gyroscope performance 

deteriorates at 70°/h [21]. Moreover, temperature variations play vital role in this bias as well 

[22]. Currently, much work is been done in order to improve the performance and quality of 

MEMS gyroscope to make them more robust to vibrations and noise sources for automotive 

applications [23].  

 

2. Materials and Methods 

The InvenSense MPU-6050 (TDK InvenSense, US) is a sensor with low cost that contains a 

MEMS gyroscope and a MEMS accelerometer on a single chip. Standard I2C-bus Interface 

is used for communication. In this research additional processing hardware is attached to 

MPU-6050 and interfacing is done with the MATLAB® using instrumentation and control 

toolbox. This sensor is mounted at approximate location of center of gravity of vehicle. The 

vehicle is driven in different urban conditions to acquire results.  

 

Figure 1. Dynamics based estimation architecture 
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Figure 2. Kinematics Based Estimation Architecture 

2.1. Mathematical Modeling and Validation 

2.1.1 Mathematical Modeling 

 

Figure 3. Single Track Vehicle Model  

WE have used bicycle model for implementation of our algorithm (see Figure 3). Considering 

roll dynamics we can write equation for lateral motion as,  

 𝐦𝐚𝐲 = 𝐅𝐲𝐟 + 𝐅𝐲𝐫, (1) 

In eq(1) m is the mass of vehicle. Lateral acceleration is denoted by 𝐚𝐲, 𝐅𝐲𝐟  denotes the 

front tire force and 𝐅𝐲𝐫 is rear tire force. Yaw rate can be expressed as,  

 𝐈𝐳�̈� = 𝐥𝐟𝐅𝐲𝐟 − 𝐥𝐫𝐅𝐲𝐫, (2) 

 𝐈𝐳 is the yaw inertia in eq(2), 𝛙 ̈  is the yaw rate, 𝐥𝐟 is distance of front from center of gravity 

and 𝐥𝐫 is the distance of rear from center of gravity of vehicle. Roll rate can be written as, 

 𝐈𝐱𝐱�̇� + 𝐂𝐪�̇� + 𝐊𝐪𝛟 = 𝐦𝐡𝐚𝐲 (3) 

According to eq(3) Roll moment of inertia is  𝐈𝐱𝐱, �̇� denotes the roll rate, and 𝛟 is the roll 

angle of vehicle, 𝐦 represents mass of vehicle, h is the height from center of gravity. 𝐂𝐪 is 
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expressed as compliance and 𝐊𝐪 denotes the stiffness coefficient. Now we will substitute the 

value of 𝐚𝐲,𝐅𝐲𝐟 and 𝐅𝐲𝐫, the expression for lateral acceleration becomes, 

 
𝐯�̇� =

𝐂𝐟

𝐦 [𝛅 −
𝐯𝐲 + 𝐋𝐟(�̇�)

𝐯𝐱
]

+
𝐂𝐫

𝐦 [−
𝐯𝐲 − 𝐋𝐫(�̇�)

𝐯𝐱
]

 
(4) 

𝐯�̇� is the lateral acceleration in eq(4), 𝛅 is the steer angle �̇� is the yaw rate, 𝐯𝐱 is the 

longitudinal velocity and 𝐯𝐲 is the lateral velocity. Yaw acceleration can be represented in 

eq(5) as, 

 
�̈� =

𝐚𝐂𝐟

𝐈𝐳𝐳 [𝛅 −
𝐯𝐲 + 𝐋𝐟(�̇�)

𝐯𝐱
]

−
𝐛𝐂𝐫

𝐈𝐳𝐳 [−
𝐯𝐲 − 𝐋𝐫(�̇�)

𝐯𝐱
]

 
(5) 

�̈� is the yaw acceleration, 𝐈𝐳𝐳 represents the yaw moment of inertia, 𝐯𝐱 is the longitudinal 

velocity and 𝐯𝐲 is the lateral velocity. Considering the single track model roll acceleration can 

be expressed as, 

 
�̈� =

𝐦𝐡

𝐈𝐱𝐱[𝐯𝐲. + 𝐯𝐱𝛙.]
−

𝐂𝐪𝛟.

𝐈𝐱𝐱
−

𝐊𝐪𝛟

𝐈𝐱𝐱
 

(6) 

Where �̈� is the roll acceleration, 𝐈𝐱𝐱 is the roll moment of inertia 

Online Parameter Estimation: 

State observer can be best described as a system that can be used to provide estimate of 

the internal states of a real time system. It utilizes available input measurement of system to 

provide estimate of output under consideration which cannot be directly measured.  

Kalman Filter 
 

A Kalman filter [24] is a stochastic system modeling technique that can be applied to a 

controls or data processing problem when deterministic models and techniques are not 

sufficient.  

 

System to be estimated 

 
The Kalman filter works out the state estimate of a discrete time system, which can be 

denoted by a linear stochastic difference equation and its measurement equation as 

under: 

 𝒙𝒌+𝟏 = 𝑨𝒌𝒙𝒌 + 𝑩𝒖𝒌 + 𝒘𝒌 (7) 

 𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘 (7) 

Kalman Filter can update in two steps. 

http://en.wikipedia.org/wiki/State_space_(controls)
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1. Time update or predictor equations for increasing time. 

 

 𝑥𝑘+1
^− = 𝐴𝑘𝑥𝑘

^ + 𝐵𝑢𝑘 (8) 

 
𝑃𝑘+1

− = 𝐴𝑘𝑃𝑘𝐴𝑘
𝑇 + 𝑄𝑘 

 (9) 

 

2. Measurement update or corrector equations  for adjusting new measurement in 

a priori estimate. 

𝐾𝑘 = (𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘)−1                                            (10)                         

 

𝑥𝑘
^ = 𝑥𝑘

^− + 𝐾(𝑧𝑘 − 𝐻𝑘𝑥𝑘
^−)                                       (11) 

 
𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘

−                                               (12) 

After each update, the above two steps are repeated. 

Sliding Mode Observer: 

Sliding mode observers have unique properties, in that the ability to generate a sliding 

motion on the error between the measured plant output and the output of the observer 

ensures that a sliding mode observer produces a set of state estimates that are precisely 

commensurate with the actual output of the plant. 

The state space can be written as, 

ẋ = Ax + Bu (13) 

y = Cx (14) 

 Tc = [Nc
T

C
] (15) 

where the columns of Nc ∈ ℝn×(n−p) span the null space of C.  

The non-singular transformation, CTc
−1 = [0 Ip] becomes the new distribution matrix. 

The other system matrices can be expressed as, TcATc
−1 = [

A11 A12

A21 A22
] and TcB = [

B2

B2
] where 

Tcx = [
x
y]. 

Then, the nominal system can be written as under. 

ẋ = A11x + A12y + B1u (16) 

ẏ = A21x + A22y + B2u (17) 

Considering the state matrix represented in Equation (16), 

[
A11 A12

A21 A22
] = [

0 1

−
Kq

Ixx
−

Cq

Ixx

]  

Similarly, 
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[
B1

B2
] = [

0
mh

Ixx

]  

The proposed Utkin observer has the form, 

ẋ̂ = A11x̂ + A12ŷ + B1u + Lv (18) 

ẏ̂ = A21x̂ + A22ŷ + B2u − v (19) 

Vector L is computed in such a way that A11 + LA21 lies in spectrum C. The 

discontinuous vector v is defined by, 

v = M sgn(ŷ − y) (20) 

The value of variable M used in experiments remained 0.1. 
 

Results Comparison with CARSIM 

We have used CarSim® software to simulate vehicle response under different road 

maneuvers. Vehicle handling response depend on steer profile and velocity of vehicle. 

CarSim® database contains large number of vehicles for simulation purpose. The user 

chooses a vehicle of his/her choice and simulates the dynamic response of the vehicle by 

giving different inputs to the vehicle.  

A step steer input of 70 deg is fed to the Roll dynamics model and the results for Roll angle 

is shown below in Figure 4. These results show that there is error of 6% between model and 

CarSim results which is within the acceptable limits to capture the major dynamics of the 

system. 

 

Figure 4: Step Steer response for Roll Angle 

The model is fed with the ISO double lane change maneuver and the results for the Roll 

angle is seen in Figure 5. 
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Figure 5: Roll Angle Response for ISO Double Lane change Maneuver 

 

Comparison between Kalman and Sliding Mode Observer 

A step steer input of 70 deg is given to both observers and CarSim as seen in Figure 6. It 

has been observed that the sliding mode observer kept track of roll angle better than Kalman 

filter during step steer input and root mean square error for sliding mode observer is 0.0807 

degrees whereas Kalman filter produced root mean square error of 0.19 degrees. 

 

Figure 6: Observer Results for step Input estimate for Roll Angle 

 

Similarly, in case of ISO Fish hook maneuver both the observers are fed with roll rate and 

lateral acceleration as input. It has been observed that the sliding mode observer kept track 

of roll angle better and root mean square error between sliding mode observer and CarSim 

is found to be 0.0873 degrees and 0.1459 degrees respectively. 
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Figure 7: Observer Results for ISO Fish hook Input estimate for Roll Angle 

Finally to check the performance of observer further it is fed with sine input. The Kalman 

filter shows slight deviation while tracking the roll angle but sliding mode observer tracked 

the roll angle better and the root mean square for sliding mode observer turned out to be 

0.1538 and Kalman filter produced root mean square error of 0.4472. 

 

Figure 8: Observer Results for sine input estimate of Roll Angle 
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Figure 9: Real Time Roll angle estimate using Kalman Filtering 

4. Discussion 

Roll angle estimation involving a ground vehicle is challenging due to rough terrain and 

noise. A linear Kalman filter for roll angle estimation of ground vehicle is proposed. This 

method separates the correction of attitude from heading. Previous researches utilize the 

data from sensor dynamics, but the tests have not been performed in real time dynamic 

environment such as bumpy road where noise removal plays critical role in estimations. Our 

proposed filter is fast, since it is free of iteration.  To decrease significant effects of bias 

imposing on gyroscope, a bias compensation is merged with filtering architecture. 

Experiment for efficacy of algorithm is carried out in real time environment to show the 

performance comparison with in built digital motion processor of sensor. Results show that 

the proposed filter can reach the accuracy of higher order observers. Successfully tested in 

ordinary road conditions we find a balance between estimation accuracy and time 

consumption. Compared with iterative methods, the proposed filter has much less 

convergence time. 

Finally, the implementation of proposed algorithm is carried out on low cost hardware 

that can be easily mounted on standard commercial vehicle with addition of marginal cost 

and based on attitude information Anti Roll Systems can be designed and implemented. 

5. Conclusions 

Real Time implementation in this research is carried out using Multi axis gyroscope and 

accelerometer (MPU-6050). The estimation of Roll angle using this approach is used to 

remove the gravity component from lateral acceleration prior to estimation of vehicle’s lateral 

velocity. Proposed estimation methods are simple and cost effective as they are not 

dependent on tire models or complex vehicle models. The major advantage of the 

techniques investigated is fast and accurate estimation. The RMSE remained less than 0.7 

degree. The algorithm is tested in ordinary driving conditions with speeds varying from 0 to 

70 Km/hr.  The estimate of roll angle along with lateral acceleration in real time environment 

can aid in different tire road phenomenon investigation. This simple technique can be 

coupled with sliding mode observer to provide highly accurate estimate of vehicle dynamics. 

Finally, it can be safely claimed that in presence of ordinary road conditions this technique 

can easily provide accurate estimate of roll angle by adding marginal cost to the user.  
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